基本信息
姓名:彭丽
职称:讲师
电子信箱:lipeng_math@126.com
办公室:数学院北楼106
个人简介
彭丽,女,1988年9月出生,博士研究生,副教授。
学习工作经历
教育经历:
2007.09-2011.06,衡阳师范学院,本科,数学与应用数学专业
2011.09-2014.06,BWIN必赢,硕士研究生,应用数学专业,导师:周勇
2014.09-2017.06,BWIN必赢,博士研究生,数学专业,导师:周勇
工作经历:
2017.10-2019.10,BWIN必赢,博士后
2019.05-至今,BWIN必赢,教师
研究方向
泛函微分方程、分数阶微分方程、分数阶偏方程
科研项目
主持的科研项目:
[1].博士后面上基金项目:非线性分布阶分数扩散-波方程的定性研究(编号:20
19M652785), 2019-2020.
参与的科研项目:
[1].国家自然科学基金面上项目:时间分数阶Navier-Stokes方程与扩散方程的定性研究究(批准号: 11671339),2017-2020
[2].国家自然科学基金面上项目:分数发展方程的基本理论与最优控制(批准号:11271309),2013-2016
论文专著
[1]. Li Peng, Yunqing Huang. On nonlocal backward problems for fractional stochastic diffffusion equations. Computers and Mathematics with Applications (2019), Accept.
[2]. Li Peng, Yong Zhou, A. Debbouche. Approximation techniques of optimal
control problems for fractional dynamic systems in separable Hilbert spaces.
Chaos, Solitons and Fractals, 118(2019),234-241.
[3]. Li Peng, Yong Zhou, B. Ahmad. The well-posedness for fractional nonlinear Schrödinger equations. Computers and Mathematics with Applications, 77(7)(2019): 1998-2005.
[4]. Li Peng, A. Debbouche, Yong Zhou. Existence and approximations of
solutions for time-fractional Navier-Stokes equations. Mathematical Methods in
the Applied Sciences, 41(2018),8973-8984.
[5]. Yong Zhou, Li Peng, Yunqing Huang. Existence and Hölder continuity of
solutions for time-fractional Navier-Stokes equations. Mathematical Methods in
the Applied Sciences, 41(2018),7830-7838.
[6]. Yong Zhou, Li Peng, Yunqing Huang. Duhamel’s formula for time-fractional
Schrödinger equations. Mathematical Methods in the Applied Sciences, 41(2018), 8345-8349.
[7]. Li Peng, Yong Zhou, B. Ahmad, A. Alsaedi. The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces. Chaos, Solitons and Fractals, 102 (2017),218-228.
[8]. Yong Zhou, Li Peng. Weak solutions of the time-fractional Navier-Stokes
equations and optimal control. Computers and Mathematics with Applications, 73(6)(2017),1016-1027.
[9]. Yong Zhou, Li Peng, On the time-fractional Navier-Stokes equations,
Computers & Mathematics with Applications, 73(2017),874-891.
[10]. Yong Zhou, Li Peng, B. Ahmad, A. Alsaedi. Energy methods for fractional
Navier-Stokes equations. Chaos, Solitons and Fractals, 102(2017),78-85.
[11]. Yong Zhou, Li Peng, B. Ahmad, A. Alsaedi. Topological properties of
solution sets of fractional stochastic evolution inclusions. Advances in Difffference Equations, 2017(2017),90-119.
[12]. Yong Zhou, Li Peng. Topological structure of solution sets for semilinear
evolution inclusions. Zeitschrift füer Analysis und Ihre Anwendungen, 37(2) (2018),189-208.
[13]. Yong Zhou, Li Peng. Topological properties of solutions set for partial
functional evolution inclusions. Comptes Rendus Mathematique, 355(2017),45-64.
[14]. Yong Zhou, Li Peng, B. Ahmad. Topological properties of solution sets for
stochastic evolution inclusions. Stochastic Analysis and Applications, 36(1)
(2017),114-137.
[15] Jia Mu, Yong Zhou, Li Peng. Periodic solutions and S-asymptotically periodic solutions to fractional evolution equations, Discrete Dynamics in Nature and Society, 2017(2017), Article ID 1364532.
[16]. Li Peng, Yong Zhou, Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional difffferential equations, Applied Mathematics & Computation, 257(C)(2015): 458-466.
[17]. Yong Zhou, Rongnian Wang, Li Peng. Topological Structure of the Solution
Set for Evolution Inclusions. Vol. 51. Springer, 2017.